Perturbed Coulomb potentials in the Klein-Gordon equation via the shifted-I expansion technique

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1998 J. Phys. A: Math. Gen. 313469
(http://iopscience.iop.org/0305-4470/31/15/012)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.121
The article was downloaded on 02/06/2010 at 06:33

Please note that terms and conditions apply.

Perturbed Coulomb potentials in the Klein-Gordon equation via the shifted-l expansion technique

Thabit Barakat \dagger, Maen Odeh \ddagger and Omar Mustafa $\ddagger \S$
\dagger Department of Civil Engineering, Near East University Lefkoşa, North Cyprus, Mersin 10, Turkey
\ddagger Department of Physics, Eastern Mediterranean University G Magusa, North Cyprus, Mersin 10, Turkey

Received 1 August 1997, in final form 17 December 1997

Abstract

A shifted- l expansion technique is introduced to calculate the energy eigenvalues for the Klein-Gordon (KG) equation with Lorentz vector and/or Lorentz scalar potentials. Although it applies to any spherically symmetric potential, those that include Coulomb-like terms are only considered. Exact eigenvalues for a Lorentz vector or a Lorentz scalar, and an equally mixed Lorentz vector and Lorentz scalar coulombic potentials are reproduced. Highly accurate and rapidly converging ground-state energies for Lorentz vector Coulomb with a Lorentz vector or a Lorentz scalar linear potential, $V(r)=-A_{1} / r+k r$, and $V(r)=-A_{1} / r$ and $S(r)=k r$, respectively, are obtained. Moreover, a simple straightforward closed-form solution for a KGparticle in coulombic Lorentz vector and Lorentz scalar potentials is presented.

1. Introduction

The Klein-Gordon (KG) and the Dirac equations with Lorentz scalar (added to the mass term) and/or Lorentz vector (coupled as the 0 -component of the four-vector potential) potentials are of interest in many branches of physics. For example, Lorentz scalar or equally mixed Lorentz scalar and Lorentz vector potentials have considerable interest in quark-antiquark mass spectroscopy [1-5]. Lorentz vector potentials have great utility in atomic, nuclear and plasma physics [6,7]. Therefore many attempts have been made to develop approximation techniques to treat relativistic particles in the KG and Dirac equations [1-7].

Very recently we introduced a shifted- l expansion technique (SLET) to solve the Schrödinger [8], and Dirac equations for some model potentials [9]. SLET is a reformation to the existing shifted $-N$ expansion technique (SLNT) [1,10-12] and references therein. SLET simply consists of using $1 / \bar{l}$ as an expansion parameter where $\bar{l}=l-\beta, \beta$ is a suitable shift, l is the angular momentum quantum number for spherically symmetric potentials, and $l=|m|$ for cylindrically symmetric potentials, where m is the magnetic quantum number. As such, one does not need to construct the N-dimensional form, required to perform SLNT, of the wave equation of interest. With SLET we simply expand through the quantum number in the centrifugal term of that equation. Unlike other perturbation methods [13-16], SLET puts no constraints on the coupling constants of the potential or on the quantum numbers involved. Above all, it yields very accurate and rapidly converging eigenvalues without the need of wavefunctions or matrix elements.

[^0]In this paper we shall be concerned with the shifted-l expansion for the KG equation with radially symmetric Lorentz scalar, $S(r)$, and/or Lorentz vector, $V(r)$, potentials that include Coulomb-like terms. We shall examine SLET and calculate the energy eigenvalues for the KG equation with the following potential mixtures. (i) $V(r)=-A_{1} / r$ and $S(r)=0$, which represents a π^{-}meson in a Coulomb potential. (ii) $V(r)=0$ and $S(r)=-A_{2} / r$, which has no experimental evidence, to the best of our knowledge, thus our calculations are only of academic interest. (iii) $V(r)=S(r)=-A / r$ which represents not only a KGparticle in an equally mixed Lorentz scalar and Lorentz vector potential but also a Dirac particle in the same potential mixture, where $l=j+\frac{1}{2}$ and the radial KG wavefunction represents the radial large component of the Dirac spinor [4, 9]. (iv) $V(r)=-A_{1} / r+k r$ and $S(r)=0$ representing a π^{-}meson in a Coulomb potential perturbed by a linear Lorentz vector interaction $k r$. (v) $V(r)=-A_{1} / r$ and $S(r)=k r$ describing a π^{-}meson in a Coulomb potential perturbed by a linear Lorentz scalar potential $k r$.

In section 2 we shall introduce SLET for the KG equation with any spherically symmetric Lorentz scalar and/or Lorentz vector potentials that include Coulomb-like interactions. We shall cast SLET's analytical expressions in such a way that allows the reader to use them without proceeding into their derivations. In section 3 we shall show that these expressions yield closed-form solutions to the KG equation for mixtures (i)-(iii). Ground-state energies for mixtures (iv) and (v) will be calculated and compared with those of McQuarrie and Vrscay [13] in the same section. We conclude and make remarks in section 4.

In appendix A we present a simple straightforward closed-form solution for the KG equation with Coulomb-like Lorentz scalar and Lorentz vector potentials. It could be interesting to mention that a similar solution was found by McQuarrie and Vrscay [13], who used a confluent hypergeometric function in their calculation. They have misprinted it though (see the appendix of [13]). To the best of our knowledge, such explicit solution has not been reported elsewhere.

2. SLET for the KG equation with potentials including coulombic terms

In this section we shall consider the three-dimensional KG equation with radially symmetric Lorentz vector and Lorentz scalar potentials, $V(r)$ and $S(r)$, respectively. If $\Psi(\boldsymbol{r})$ denotes the wavefunction of the KG particle, a separation of variables $\Psi(r)=r^{-1} R(r) Y(\theta, \phi)$ yields the following radial equation (in units $\hbar=c=1$) [1]:

$$
\begin{equation*}
\left[-\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}+\frac{l(l+1)}{r^{2}}+[S(r)+m]^{2}-[E-V(r)]^{2}\right] R(r)=0 \tag{1}
\end{equation*}
$$

where E is the energy and l is the angular quantum number. For Coulomb-like potentials one may use the substitutions:

$$
\begin{equation*}
V_{r}(r)=V(r)^{2}-A_{1}^{2} / r^{2} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{r}(r)=S(r)^{2}-A_{2}^{2} / r^{2} \tag{3}
\end{equation*}
$$

so that equation (1) becomes

$$
\begin{equation*}
\left[-\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}+\frac{l^{\prime}\left(l^{\prime}+1\right)}{r^{2}}+\gamma(r)+2 E V(r)\right] R(r)=E^{2} R(r) \tag{4}
\end{equation*}
$$

where

$$
\begin{align*}
& \gamma(r)=-V_{r}(r)+S_{r}(r)+2 m S(r)+m^{2} \tag{5}\\
& l^{\prime}\left(l^{\prime}+1\right)=l(l+1)-A_{c} \quad l^{\prime}=-\frac{1}{2}+\sqrt{(l+1 / 2)^{2}-A_{c}} \tag{6}\\
& A_{c}=A_{1}^{2}-A_{2}^{2} . \tag{7}
\end{align*}
$$

Hereby, it should be noted that for the case of $V(r)=-A_{1} / r$ and $S(r)=-A_{2} / r$, equation (4) reduces to a form nearly identical to the Schrödinger equation for a Coulomb field. Its solution can thus be inferred from the known solution of the Schrödinger-Coulomb problem. We carried this out in appendix A.

If we shift l^{\prime} through the relation $l^{\prime}=\bar{l}+\beta$, equation (4) reads
$\left[-\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}+\frac{\left[\bar{l}^{2}+\bar{l}(2 \beta+1)+\beta(\beta+1)\right]}{r^{2}}+\gamma(r)+2 E V(r)\right] R(r)=E^{2} R(r)$
where β is a suitable shift to be determined and is mainly introduced to avoid the trivial case when $l^{\prime}=0$.

To start the systematic $1 / \bar{l}$ expansion $[8,9]$ we define

$$
\begin{align*}
& \gamma(r)=\frac{\bar{l}^{2}}{Q}\left[\gamma\left(r_{0}\right)+\gamma^{\prime}\left(r_{0}\right) r_{0} x / \bar{l}^{1 / 2}+\gamma^{\prime \prime}\left(r_{0}\right) r_{0}^{2} x^{2} / 2 \bar{l}+\cdots\right] \tag{9}\\
& V(r)=\frac{\bar{l}^{2}}{Q}\left[V\left(r_{0}\right)+V^{\prime}\left(r_{0}\right) r_{0} x / \bar{l}^{1 / 2}+V^{\prime \prime}\left(r_{0}\right) r_{0}^{2} x^{2} / 2 \bar{l}+\cdots\right] \tag{10}\\
& E=\frac{\bar{l}^{2}}{Q}\left[E_{0}+E_{1} / \bar{l}+E_{2} / \bar{l}^{2}+E_{3} / \bar{l}^{3}+\cdots\right] \tag{11}
\end{align*}
$$

where $x=\bar{l}^{1 / 2}\left(r-r_{0}\right) / r_{0}, r_{0}$ is currently an arbitrary point to perform Taylor expansions about, with its particular value to be determined below, and Q is to be set equal to \bar{l}^{2} at the end of the calculations. Substituting equations (9)-(11) into equation (8) implies

$$
\begin{align*}
{\left[\frac{-\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+(\bar{l}+\right.} & \left.(2 \beta+1)+\frac{\beta(\beta+1)}{\bar{l}}\right)\left(1-\frac{2 x}{\bar{l}^{1 / 2}}+\frac{3 x^{2}}{\bar{l}}-\cdots\right) \\
& +\frac{r_{0}^{2} \bar{l}}{Q}\left(\gamma\left(r_{0}\right)+\frac{\gamma^{\prime}\left(r_{0}\right) r_{0} x}{\bar{l}^{1 / 2}}+\frac{\gamma^{\prime \prime}\left(r_{0}\right) r_{0}^{2} x^{2}}{2 \bar{l}}+\frac{\gamma^{\prime \prime \prime}\left(r_{0}\right) r_{0}^{3} x^{3}}{6 \bar{l}^{3 / 2}}+\cdots\right) \\
& \left.+\frac{2 r_{0}^{2} \bar{l}}{Q}\left(V\left(r_{0}\right)+\frac{V^{\prime}\left(r_{0}\right) r_{0} x}{\bar{l}^{1 / 2}}+\cdots\right)\left(E_{0}+\frac{E_{1}}{\bar{l}}+\frac{E_{2}}{\bar{l}^{2}}+\cdots\right)\right] \Phi_{n_{r}}(x) \\
= & \mu_{n_{r}} \Phi_{n_{r}}(x) \tag{12}
\end{align*}
$$

where
$\mu_{n_{r}}=\frac{r_{0}^{2} \bar{l}}{Q}\left[E_{0}^{2}+\frac{2 E_{0} E_{1}}{\bar{l}}+\frac{\left(E_{1}^{2}+2 E_{0} E_{2}\right)}{\bar{l}^{2}}+\frac{2\left(E_{0} E_{3}+E_{1} E_{2}\right)}{\bar{l}^{3}}+\cdots\right]$
and n_{r} is the radial quantum number. Equation (12) is a Schrödinger-like equation for the one-dimensional anharmonic oscillator and has been discussed in detail by Imbo et al [11]. We therefore quote only the resulting eigenvalue of [11] and write

$$
\begin{gather*}
\mu_{n_{r}}=\bar{l}\left[1+\frac{2 r_{0}^{2} V\left(r_{0}\right) E_{0}}{Q}+\frac{r_{0}^{2} \gamma\left(r_{0}\right)}{Q}\right]+\left[(2 \beta+1)+\frac{2 r_{0}^{2} V\left(r_{0}\right) E_{1}}{Q}+\left(n_{r}+\frac{1}{2}\right) w\right] \\
+\frac{1}{\bar{l}}\left[\beta(\beta+1)+\frac{2 r_{0}^{2} V\left(r_{0}\right) E_{2}}{Q}+\alpha_{1}\right]+\frac{1}{\bar{l}^{2}}\left[\frac{2 r_{0}^{2} V\left(r_{0}\right) E_{3}}{Q}+\alpha_{2}\right] \tag{14}
\end{gather*}
$$

where α_{1} and α_{2} are given in appendix B of this paper. If we compare equation (14) with (13), we obtain

$$
\begin{align*}
& E_{0}=V\left(r_{0}\right) \pm \sqrt{V\left(r_{0}\right)^{2}+Q / r_{0}^{2}+\gamma\left(r_{0}\right)} \tag{15}\\
& E_{1}=\frac{Q}{2 r_{0}^{2}\left(E_{0}-V\left(r_{0}\right)\right)}\left[2 \beta+1+\left(n_{r}+\frac{1}{2}\right) w\right] \tag{16}\\
& E_{2}=\frac{Q}{2 r_{0}^{2}\left(E_{0}-V\left(r_{0}\right)\right)}\left[\beta(\beta+1)+\alpha_{1}\right] \tag{17}\\
& E_{3}=\frac{Q}{2 r_{0}^{2}\left(E_{0}-V\left(r_{0}\right)\right)} \alpha_{2} \tag{18}
\end{align*}
$$

and

$$
\begin{equation*}
E_{n_{r}}=E_{0}+\frac{1}{2 r_{0}^{2}\left(E_{0}-V\left(r_{0}\right)\right)}\left[\beta(\beta+1)+\alpha_{1}+\frac{\alpha_{2}}{\bar{l}}\right] \tag{19}
\end{equation*}
$$

Here r_{0} is chosen to be the minimum of E_{0}, i.e.

$$
\begin{equation*}
\frac{\mathrm{d} E_{0}}{\mathrm{~d} r_{0}}=0 \quad \text { and } \quad \frac{\mathrm{d}^{2} E_{0}}{\mathrm{~d} r_{0}^{2}}>0 \tag{20}
\end{equation*}
$$

Hence, r_{0} is obtained through the relation

$$
\begin{equation*}
2 Q=2\left(l^{\prime}-\beta\right)^{2}=b\left(r_{0}\right)+\sqrt{b\left(r_{0}\right)^{2}-4 c\left(r_{0}\right)} \tag{21}
\end{equation*}
$$

where

$$
\begin{align*}
& b\left(r_{0}\right)=r_{0}^{3}\left[2 V\left(r_{0}\right) V^{\prime}\left(r_{0}\right)+\gamma^{\prime}\left(r_{0}\right)+r_{0} V^{\prime}\left(r_{0}\right)^{2}\right] \tag{22}\\
& c\left(r_{0}\right)=\frac{r_{0}^{6}}{4}\left[\gamma^{\prime}\left(r_{0}\right)^{2}+4 V\left(r_{0}\right) V^{\prime}\left(r_{0}\right) \gamma^{\prime}\left(r_{0}\right)-4 \gamma\left(r_{0}\right) V^{\prime}\left(r_{0}\right)^{2}\right] . \tag{23}
\end{align*}
$$

The shifting parameter β is determined by requiring $E_{1}=0[1,8-12]$ to obtain

$$
\begin{equation*}
\beta=-\left[1+\left(n_{r}+\frac{1}{2}\right) w\right] / 2 \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
w=\left[12+\frac{2 r_{0}^{4} \gamma^{\prime \prime}\left(r_{0}\right)}{Q}+\frac{4 r_{0}^{4} V^{\prime \prime}\left(r_{0}\right) E_{0}}{Q}\right]^{1 / 2} \tag{25}
\end{equation*}
$$

It is convenient to summarize the above procedure in the following steps. (a) Calculate Q from equation (21) and substitute it into equation (15) to find E_{0} in terms of r_{0}. (b) Substitute E_{0} and Q into equation (25) to obtain w. (c) Find β from equation (24) to calculate r_{0} from equation (21). (e) Finally, one can obtain E_{0} and calculate $E_{n_{r}}$ from equation (19). However, one is not always able to calculate r_{0} in terms of the potential coupling constants since the analytical expressions become algebraically complicated, although straightforward. Therefore, one has to appeal to numerical computations to find r_{0} and hence E_{0}.

3. Applications, results and discussion

To show the performance of the analytical expressions of SLET it is best to consider some special cases.
3.1. $V(r)=-A_{1} / r$ and $S(r)=0$

A pionic atom in a Coulomb potential obeys the KG equation with $V(r)=-A_{1} / r$ and $S(r)=0$. To calculate its bound-state energies, which are simply the bound-state energies of a π^{-}meson in a Coulomb potential, we follow the SLET procedure and find

$$
\begin{equation*}
E_{0}=\frac{-A_{1}^{2} \pm\left(A_{1}^{2}+Q\right)}{A_{1} r_{0}} \tag{26}
\end{equation*}
$$

Here we have to choose the positive sign since states with negative energies correspond to antiparticles. Furthermore, the negative sign yields a contradiction to equation (21). Hence $w=2$,

$$
\begin{align*}
& Q=\left(l^{\prime}-\beta\right)^{2}=\left[n_{r}+\frac{1}{2}+\sqrt{\left(l+\frac{1}{2}\right)^{2}-A_{1}^{2}}\right]^{2} \tag{27}\\
& r_{0}=\sqrt{\frac{Q^{2}+Q A_{1}^{2}}{m^{2} A_{1}^{2}}} \tag{28}
\end{align*}
$$

and

$$
\begin{equation*}
E_{0}=m\left[1+\frac{A_{1}^{2}}{\tilde{n}^{2}}\right]^{-1 / 2} \tag{29}
\end{equation*}
$$

where $\tilde{n}=\sqrt{Q}$. Equation (29) represents the well known closed-form solution of the KG equation for a π^{-}meson in a Coulomb potential [17]. It should be noted that higherorder terms of the energy eigenvalues vanish identically, i.e. $E_{2}=0$ and $E_{3}=0$. Hence $E_{n_{r}}=E_{0}$.
3.2. $V(r)=0$ and $S(r)=-A_{2} / r$

Since there is no experimental evidence, to the best of our knowledge, for such a long-range interaction, our calculations are only of academic interest. Following the above procedure we find

$$
\begin{equation*}
r_{0}=\frac{\left(l^{\prime}-\beta\right)^{2}}{m A_{2}} \tag{30}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{0}= \pm m\left[1-\frac{A_{2}^{2}}{\tilde{n}^{2}}\right]^{1 / 2} \tag{31}
\end{equation*}
$$

where $\tilde{n}=n_{r}+\frac{1}{2}+\sqrt{\left(l+\frac{1}{2}\right)^{2}+A_{2}^{2}}$. Again the higher-order terms of the energy eigenvalues vanish identically. Thus $E_{n_{r}}=E_{0}$.

Obviously there exist two branches of solutions in the bound region and they exhibit identical behaviour, which reflects the fact that the Lorentz scalar interaction does not distinguish between particles and antiparticles. The particle and antiparticle states, positive and negative energies, respectively, approach each other with increasing coupling constant, without touching. Therefore, spontaneous pair creation never occurs, no matter how strong the potential chosen.

3.3. $V(r)=S(r)=-A / r$

This type of potential mixture, $V(r)=S(r)$, has considerable interest in quarkonium spectroscopy $[4,9,18]$. For the particular case $V(r)=S(r)=-A / r$, SLET yields

$$
\begin{equation*}
E_{0}=-A / r_{0} \pm m \tag{32}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(E_{0}^{2}-m^{2}\right) r_{0}^{2}=A^{2} \mp\left(Q+A^{2}\right) \tag{33}
\end{equation*}
$$

Equation (33) can be satisfied if and only if the negative sign is chosen, otherwise it contradicts equation (21). The only valid sign in equation (32) is thus the positive one, and hence

$$
\begin{equation*}
E_{0}=-A / r_{0}+m \tag{34}
\end{equation*}
$$

which in turn implies that

$$
\begin{equation*}
r_{0}=\frac{n^{2}+A^{2}}{2 m A} \quad n=n_{r}+l+1 \tag{35}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{n_{r}}=E_{0}=m\left[1-\frac{2 A^{2}}{n^{2}+A^{2}}\right] \tag{36}
\end{equation*}
$$

where higher-order terms of the energy eigenvalues vanish identically, and n is the principle quantum number. For $A \rightarrow \infty, E_{n_{r}}$ approaches the value $-m$ asymptotically, but the state never goes into the negative continuum.

To show that equation (36) yields the energy eigenvalues for Dirac particle in the same potential mixture, we replace l by $j+\frac{1}{2}$ to obtain

$$
\begin{equation*}
E_{n_{r}}=m\left[1-\frac{2 A^{2}}{\left(n_{r}+|\kappa|+1\right)^{2}+A^{2}}\right] \tag{37}
\end{equation*}
$$

where $|\kappa|=j+\frac{1}{2}$ [19].

3.4. $V(r)=-A_{1} / r+k r$ and $S(r)=0$

This potential represents a π^{-}meson in a Coulomb potential perturbed by a linear Lorentz vector potential $k r$. In this case

$$
\begin{equation*}
\gamma(r)=-k^{2} r^{2}+2 A_{1} k+m^{2} \tag{38}
\end{equation*}
$$

Equation (38), when substituted in (21), (15), (25), (24), and again in (21), respectively, yields a very involved algebraic equation for r_{0}. We solve this equation numerically with a maximum error of order $\sim 10^{-15}$ to calculate for r_{0}. Once r_{0} is calculated, Q, E_{0}, w, β, and hence $E_{n_{r}}$ can be obtained.

In tables 1 and 2 we list our results for the ground-state energies along with those of McQuarrie and Vrscay [13], who used hypervirial and Hellmann-Feynman theorems to construct Rayleigh-Schrödinger (RS) perturbation expressions to an arbitrary order. Our results are given in such a way that the contributions of the second- and third-order corrections, E_{2} / \bar{l}^{2} and E_{3} / \bar{l}^{3}, respectively, to the energy eigenvalues are made clear. The results are in excellent agreement with those of [13].

Table 1. Ground-state energies of a π^{-}meson in $V(r)=-A_{1} / r+k r$ and $S(r)=0$ (in $\hbar=c=m=1$ units). The lower bounds to the energies E of [13] are obtained by replacing the last j digits of the upper bounds with the j digits in parentheses.

A_{1}	k	$[13]$	E_{0}	$E_{0}+E_{2} / \bar{l}^{2}$	Equation (11)
0.2	0.0	0.97890631293	0.97890631293	0.97890631293	0.97890631293
	0.01	$1.027622(19)$	1.029590	1.027995	1.027641
	0.05	$1.152(48)$	1.1541	1.1514	1.1504
	0.1	$1.277(48)$	1.2681	1.2648	1.2634
	0.2	$1.50(37)$	1.4478	1.4436	1.4416
	0.3	$1.73(45)$	1.5959	1.5907	1.5882
0.3	0.0	0.9486832981	0.9486832981	0.9486832981	0.9486832981
	0.01	$0.9843795380(78)$	0.9861391713	0.9844578890	0.9843836237
	0.05	$1.08612(08)$	1.09160	1.08710	1.08611
	0.1	$1.18398(08)$	1.19111	1.18517	1.18356
	0.2	$1.345(34)$	1.3500	1.3421	1.3397
	0.3	$1.487(52)$	1.4820	1.4723	1.4693

Table 2. Ground-state energies of a π^{-}meson in $V(r)=-A_{1} / r+k r$ and $S(r)=0$ (in $\hbar=c=m=1$ units). The lower bounds to the energies E of [13] are obtained by replacing the last j digits of the upper bounds with the j digits in parentheses.

A_{1}	k	$[13]$	E_{0}	$E_{0}+E_{2} / \bar{l}^{2}$	Equation (11)
0.4	0.0	0.894427191	0.894427191	0.894427191	0.894427191
	0.01	0.9190495619	0.9199389105	0.9190185899	0.9190592557
	0.05	$0.99735023(19)$	1.00292492	0.99763976	0.99732540
	0.1	$1.0759666(05)$	1.08503730	1.07689328	1.07585618
	0.2	$1.20488(59)$	1.21825	1.20662	1.20453
	0.3	$1.3138(20)$	1.32987	1.31551	1.31261
0.5	0.0	0.70710678119	0.70710678119	0.70710678119	0.70710678119
	0.01	0.7174441845	0.7175816778	0.7174395344	0.7174446067
	0.05	0.7548104279	0.7569796562	0.7546116940	0.7548645285
	0.1	$0.795714744277(07)$	0.8013654436	0.7951332112	0.7959080738
	0.2	$0.86613531(67)$	0.87841386	0.86508153	0.86648455
	0.3	$0.9269(68)$	0.9450	0.92586	0.92734

3.5. $V(r)=-A_{1} / r$ and $S(r)=k r$

A π^{-}meson in a Coulomb potential perturbed by a linear scalar interaction is described by $V(r)=-A_{1} / r$ and $S(r)=k r$ potential mixture in the KG equation. In this case

$$
\begin{equation*}
\gamma(r)=k^{2} r^{2}+2 m k r+m^{2} . \tag{39}
\end{equation*}
$$

Following the same steps as (iv), we numerically solve for r_{0}, to a maximum error of order $\sim 10^{-15}, Q, E_{0}, w, \beta$, and $E_{n_{r}}$. Our results for the ground-state energies are presented in tables 3 and 4 in such a way that the convergence of SLET is made clear. We compare them with those of [13]; they are in excellent agreement.

In view of the above results, the following observations deserve to be recorded.
The closed-form solutions, equations (29), (31) and (36), being obtained by the leading term of the energy series, equation (11), where higher-order terms vanished identically, reveals how rapidly converging are the results of SLET.

Table 3. Ground-state energies of a π^{-}meson in $V(r)=-A_{1} / r$ and $S(r)=k r$ (in $\hbar=c=m=1$ units). The lower bounds to the energies E of [13] are obtained by replacing the last j digits of the upper bounds with the j digits in parentheses.

A_{1}	k	$[13]$	E_{0}	$E_{0}+E_{2} / \bar{l}^{2}$	Equation (11)
0.2	0.0	0.9789063129	0.9789063129	0.9789063129	0.9789063129
	0.01	$1.0266839(09)$	1.02871502	1.02708579	1.02671248
	0.05	$1.145795(48)$	1.1479170	1.1449853	1.1439393
	0.1	$1.263(34)$	1.2543	1.2506	1.2491
	0.2	$1.47(34)$	1.418	1.413	1.411
	0.3	$1.68(41)$	1.551	1.545	1.542
0.3	0.0	0.94868329805	0.94868329805	0.94868329805	0.948683298
	0.01	$0.9834119450(49)$	0.9852632146	0.9835164748	0.9834118201
	0.05	$1.079797(62)$	1.085772	1.081002	1.079875
	0.1	$1.170(69)$	1.17826	1.17182	1.16999
	0.2	$1.316(05)$	1.3227	1.31403	1.31133
	0.3	$1.443(09)$	1.4404	1.42998	1.42666

Table 4. Ground-state energies of a π^{-}meson in $V(r)=-A_{1} / r$ and $S(r)=k r$ (in $\hbar=c=m=1$ units). The lower bounds to the energies E of [13] are obtained by replacing the last j digits of the upper bounds with the j digits in parentheses.

A_{1}	k	$[13]$	E_{0}	$E_{0}+E_{2} / l^{2}$	Equation (11)
0.4	0.0	0.894427191	0.894427191	0.894427191	0.894427191
	0.01	0.9180779227	0.9190603882	0.9180537998	0.9180878824
	0.05	$0.9915050(49)$	0.997801768	0.99204395	0.99150796
	0.1	$1.063490(84)$	1.07395616	1.06503089	1.06352424
	0.2	$1.1791(88)$	1.19492	1.18212	1.17926
	0.3	$1.2755(37)$	1.29449	1.27883	1.27503
0.5	0.0	0.7071067812	0.7071067812	0.7071067812	0.7071067812
	0.01	0.7168151723	0.7169998899	0.7168096675	0.7168157252
	0.05	0.7514351538	0.7544233036	0.7512342784	0.7514976377
	0.1	$0.78877520361(59)$	0.7967081101	0.7883364991	0.7889588588
	0.2	$0.852303690(62)$	0.869749249	0.852125792	0.852493296
	0.3	$0.9068223(16)$	0.9322673	0.9074421	0.906889

The numerical results of SLET, in tables 1-4, imply that the contributions of the secondand third-order corrections to the energy eigenvalues are almost negligible. The convergence of SLET is thus out of the question. However, the RS coefficients E^{p} for the eigenvalue

$$
\begin{equation*}
E=\sum_{p=0}^{\infty} E^{(p)} k^{p} \tag{40}
\end{equation*}
$$

used in [13], as well as their continued-fraction (CF) counterparts c_{p} were computed numerically to large order, $p \sim 100$ and $p \sim 50$ for the Lorentz vector linear and the Lorentz scalar linear perturbations, respectively. Numerical ratio tests showed that the perturbation series are divergent [13]. Also, the c_{p} had suffered from occasional eruptions reversing the roles of the upper and lower bounds of the energy eigenvalues. Moreover, the gap between the two bounds increases with increasing coupling constant k, as does the uncertainty of the energy eigenvalues.

4. Conclusions and remarks

In this paper we have introduced SLET to solve the eigenvalues of KG equation with Lorentz vector and Lorentz scalar potentials including coulombic terms. Although it applies to any spherically symmetric potential, those that include Coulomb-like terms were only considered. We have reproduced closed-form solutions for a Lorentz vector or a Lorentz scalar, and for an equally mixed Lorentz vector and Lorentz scalar coulombic potentials [20]. Compared with those of [13] our results are highly accurate and rapidly convergent.

The conceptual soundness of our SLET is obvious. It is highly accurate and efficient with respect to computer time. It does not need the wavefunctions or matrix elements, but when necessary wavefunctions can be calculated. It puts no constraints on the coupling constants of the potential or on the quantum numbers. It simply consists of using $1 / \bar{l}$ as an expansion parameter rather than the coupling constant of the potential. It is to be understood as being an expansion through not only the angular momentum quantum number but also through any existing quantum number in the centrifugal-like term of any Schrödinger-like equation, equation (4).

A general observation concerning the method used by McQuarrie and Vrscay [13] is in order. Unlike our approach, their method involves expansions through the coupling constant k, equation (40). Thus, whereas their computations for the ground-state energies are beyond doubt, the same need not be true for the case of strong coupling constant $k>1$, in equation (40), for example.

Finally, we would like to remark that SLET is also applicable to more complicated potentials. For example, the screened Coulomb potentials which have great utility in atomic, nuclear and plasma physics. The equally mixed Lorentz scalar and Lorentz vector logarithmic potential which has significant interest in quarkonium spectroscopy [4].

Appendix A. The KG equation with Coulomb-like Lorentz scalar and Lorentz vector potentials

In this section we present a simple solution for a KG particle in Coulomb-like Lorentz scalar and Lorentz vector potentials, i.e. $V(r)=-A_{1} / r$ and $S(r)=-A_{2} / r$. For this particular problem the KG equation reduces to

$$
\begin{equation*}
\left[-\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}+\frac{l^{\prime}\left(l^{\prime}+1\right)}{r^{2}}-\frac{2\left(m A_{2}+E A_{1}\right)}{r}\right] R(r)=\left[E^{2}-m^{2}\right] R(r) \tag{41}
\end{equation*}
$$

It is obvious that this equation is in a form nearly identical to the Schrödinger equation for a Coulomb potential. Its solution can thus be inferred from the known Schrödinger-Coulomb solution. Therefore, one may obtain its solution through the relation

$$
\begin{equation*}
E^{2}-m^{2}=\frac{-\left(2 m A_{2}+2 E A_{1}\right)^{2}}{(2 \tilde{n})^{2}} \tag{42}
\end{equation*}
$$

This equation is quadratic in E and thus admits a solution of the form

$$
\begin{equation*}
E_{n_{r}}=m\left[\frac{-A_{1} A_{2} \pm \sqrt{A_{1}^{2} A_{2}^{2}+\left(\tilde{n}^{2}+A_{1}^{2}\right)\left(\tilde{n}^{2}-A_{2}^{2}\right)}}{\tilde{n}^{2}+A_{1}^{2}}\right] \tag{43}
\end{equation*}
$$

where $\tilde{n}=n_{r}+l^{\prime}+1$. Hereby, it should be pointed out that this result reduces to those obtained in sections 3.1-3.3. Although McQuarrie and Vrscay [13] used a confluent hypergeometric function to obtain this result, they have misprinted it (see the appendix of [13]).

Appendix B. α_{1} and α_{2} in equation (14)

The definitions of α_{1} and α_{2} which appeared in equation (14) are:

$$
\begin{align*}
& \alpha_{1}=\left[\left(1+2 n_{r}\right) e_{2}+3\left(1+2 n_{r}+2 n_{r}^{2}\right) e_{4}\right]-w^{-1}\left[e_{1}^{2}+6\left(1+2 n_{r}\right) e_{1} e_{3}\right. \\
& \left.\quad+\left(11+30 n_{r}+30 n_{r}^{2}\right) e_{3}^{2}\right] \tag{44}\\
& \alpha_{2}=\left(1+2 n_{r}\right)
\end{align*} d_{2}+3\left(1+2 n_{r}+2 n_{r}^{2}\right) d_{4}+5\left(3+8 n_{r}+6 n_{r}^{2}+4 n_{r}^{3}\right) d_{6}-w^{-1}\left[\left(1+2 n_{r}\right) e_{2}^{2}\right)
$$

where

$$
\begin{equation*}
e_{j}=\frac{\varepsilon_{j}}{w^{j / 2}} \quad \text { and } \quad d_{i}=\frac{\delta_{i}}{w^{i / 2}} \tag{46}
\end{equation*}
$$

with $j=1,2,3,4, i=1,2,3,4,5,6$, and

$$
\begin{align*}
& \varepsilon_{1}=-2(2 \beta+1) \quad \varepsilon_{2}=3(2 \beta+1) \tag{47}\\
& \varepsilon_{3}=-4+\frac{r_{0}^{5}}{6 Q}\left[\gamma^{\prime \prime \prime}\left(r_{0}\right)+2 V^{\prime \prime \prime}\left(r_{0}\right) E_{0}\right] \tag{48}\\
& \varepsilon_{4}=5+\frac{r_{0}^{6}}{24 Q}\left[\gamma^{\prime \prime \prime \prime}\left(r_{0}\right)+2 V^{\prime \prime \prime \prime}\left(r_{0}\right) E_{0}\right] \tag{49}\\
& \delta_{1}=-2 \beta(\beta+1)+\frac{2 r_{0}^{3} V^{\prime}\left(r_{0}\right) E_{2}}{Q} \tag{50}\\
& \delta_{2}=3 \beta(\beta+1)+\frac{r_{0}^{4} V^{\prime \prime}\left(r_{0}\right) E_{2}}{Q} \tag{51}\\
& \delta_{3}=-4(2 \beta+1) \quad \delta_{4}=5(2 \beta+1) \tag{52}\\
& \delta_{5}=-6+\frac{r_{0}^{7}}{120 Q}\left[\gamma^{\prime \prime \prime \prime \prime}\left(r_{0}\right)+2 V^{\prime \prime \prime \prime \prime}\left(r_{0}\right) E_{0}\right] \tag{53}\\
& \delta_{6}=7+\frac{r_{0}^{8}}{720 Q}\left[\gamma^{\prime \prime \prime \prime \prime \prime}\left(r_{0}\right)+2 V^{\prime \prime \prime \prime \prime \prime}\left(r_{0}\right) E_{0}\right] . \tag{54}
\end{align*}
$$

The terms including E_{1} have been dropped from the expressions above since $E_{1}=0$.

References

[1] Mustafa O and Sever R 1991 Phys. Rev. A 435787 Mustafa O and Sever R 1991 Phys. Rev. A 444142
[2] Papp E 1991 Ann. Phys., Lpz. 48319 Papp E 1991 Phys. Lett. B 25919
[3] Stepanov S and Tutik R 1992 Phys. Lett. A 16326
Roychoudhury R and Varshni Y 1987 J. Phys. A: Math. Gen. 20 L1083
[4] Critchfield C 1976 J. Math. Phys. 17261
Gunion J and Li L 1975 Phys. Rev. D 123583
Magyari E 1980 Phys. Lett. 95B 295

Jena S and Tripati T 1983 Phys. Rev. D 281780
[5] Long C and Robson D 1983 Phys. Rev. D 27644
[6] McEnnan J, Botto D J and Pratt R H 1977 Phys. Rev. A 161768
Gabriel O V, Chaudhuri S and Pratti R H 1981 Phys. Rev. A 243088
Vrscay E R and Hamidian H 1988 Phys. Lett. 130A 141
[7] Rogers G W 1984 Phys. Rev. A 3035
Au C K and Aharonov Y 1979 Phys. Rev. A 202245
[8] Mustafa O and Barakat T 1997 Commun. Theor. Phys. 28257
[9] Mustafa O and Barakat T 1998 Commun. Theor. Phys. 29 accepted for publication
[10] Mustafa O 1993 J. Phys.: Condens. Matter 51327
[11] Imbo T Pagnamenta N and Sukhatme U 1984 Phys. Rev. D 291669
Mustafa O and Chhajlany S C 1994 Phys. Rev. A 502926
[12] Panja M, Dutt R and Varshni Y P 1990 Phys. Rev. A 42106
Panja M, Bag M, Dutt R and Varshni Y P 1992 Phys. Rev. A 451523
Roychoudhury R and Varshni Y P 1989 Phys. Rev. A 395523
[13] McQuarrie B R and Vrscay E R 1993 Phys. Rev. A 47868
[14] Swenson R J and Danforth S H 1972 J. Chem. Phys. 571734
Killingbeck J 1978 Phys. Lett. 65A 87
Fock V 1971 Z. Phys. 61126
McKinley W A 1971 Am. J. Phys. 39905
[15] Epstein S 1976 Am. J. Phys. 44251
McRae S M and Vrscay E R 1992 J. Math. Phys. 333004
Lai C S 1982 J. Physique A 15 L155
[16] Bednar M 1973 Ann. Phys., NY 75305
Cizek J and Vrscay E R 1982 Int. J. Quantum Chem. 2127
[17] Schiff L I 1955 Quantum Mechanics 2nd edn (New York: McGraw-Hill)
[18] Ikhdair S, Mustafa O and Sever R 1993 Hadronic J. 1657
[19] Greiner W 1990 Relativistic Quantum Mechanics (Berlin: Springer)
[20] Baeyer H C 1975 Phys. Rev. D 123086

[^0]: § E-mail address: Omustafa@mozart.as.emu.edu.tr

