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Abstract. A shifted{ expansion technique is introduced to calculate the energy eigenvalues for
the Klein—-Gordon (KG) equation with Lorentz vector and/or Lorentz scalar potentials. Although
it applies to any spherically symmetric potential, those that include Coulomb-like terms are only
considered. Exact eigenvalues for a Lorentz vector or a Lorentz scalar, and an equally mixed
Lorentz vector and Lorentz scalar coulombic potentials are reproduced. Highly accurate and
rapidly converging ground-state energies for Lorentz vector Coulomb with a Lorentz vector or
a Lorentz scalar linear potentiaV,(r) = —A1/r + kr, andV(r) = —Ay/r and S(r) = kr,
respectively, are obtained. Moreover, a simple straightforward closed-form solution for a KG-
particle in coulombic Lorentz vector and Lorentz scalar potentials is presented.

1. Introduction

The Klein—-Gordon (KG) and the Dirac equations with Lorentz scalar (added to the mass
term) and/or Lorentz vector (coupled as the 0-component of the four-vector potential)
potentials are of interest in many branches of physics. For example, Lorentz scalar or
equally mixed Lorentz scalar and Lorentz vector potentials have considerable interest in
guark—antiquark mass spectroscopy [1-5]. Lorentz vector potentials have great utility in
atomic, nuclear and plasma physics [6,7]. Therefore many attempts have been made
to develop approximation techniques to treat relativistic particles in the KG and Dirac
equations [1-7].

Very recently we introduced a shiftédexpansion technique (SLET) to solve the
Schibdinger [8], and Dirac equations for some model potentials [9]. SLET is a reformation
to the existing shiftedvy expansion technique (SLNT) [1,10-12] and references therein.
SLET simply consists of using/1as an expansion parameter wheee [ — g, § is a suitable
shift, [ is the angular momentum quantum number for spherically symmetric potentials, and
[ = |m] for cylindrically symmetric potentials, where is the magnetic quantum number.

As such, one does not need to construct¥idimensional form, required to perform SLNT,

of the wave equation of interest. With SLET we simply expand through the quantum number
in the centrifugal term of that equation. Unlike other perturbation methods [13-16], SLET
puts no constraints on the coupling constants of the potential or on the quantum numbers
involved. Above all, it yields very accurate and rapidly converging eigenvalues without the
need of wavefunctions or matrix elements.
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In this paper we shall be concerned with the shiftezkpansion for the KG equation
with radially symmetric Lorentz scalas(r), and/or Lorentz vectorV (r), potentials that
include Coulomb-like terms. We shall examine SLET and calculate the energy eigenvalues
for the KG equation with the following potential mixtures. W)r) = —A;1/r andS(r) =0,
which represents a~ meson in a Coulomb potential. (ilf(r) = 0 andS(r) = —Ay/r,
which has no experimental evidence, to the best of our knowledge, thus our calculations
are only of academic interest. (iily (r) = S(r) = —A/r which represents not only a KG-
particle in an equally mixed Lorentz scalar and Lorentz vector potential but also a Dirac
particle in the same potential mixture, where= j + % and the radial KG wavefunction
represents the radial large component of the Dirac spinor [4, 9]V(iw) = —A1/r+kr and
S(r) = 0 representing a~ meson in a Coulomb potential perturbed by a linear Lorentz
vector interactionkr. (v) V(r) = —Ay/r and S(r) = kr describing ar~ meson in a
Coulomb potential perturbed by a linear Lorentz scalar potehtial

In section 2 we shall introduce SLET for the KG equation with any spherically
symmetric Lorentz scalar and/or Lorentz vector potentials that include Coulomb-like
interactions. We shall cast SLET'’s analytical expressions in such a way that allows the
reader to use them without proceeding into their derivations. In section 3 we shall show
that these expressions yield closed-form solutions to the KG equation for mixtures (i)—(iii).
Ground-state energies for mixtures (iv) and (v) will be calculated and compared with those
of McQuarrie and Vrscay [13] in the same section. We conclude and make remarks in
section 4.

In appendix A we present a simple straightforward closed-form solution for the KG
equation with Coulomb-like Lorentz scalar and Lorentz vector potentials. It could be
interesting to mention that a similar solution was found by McQuarrie and Vrscay [13],
who used a confluent hypergeometric function in their calculation. They have misprinted it
though (see the appendix of [13]). To the best of our knowledge, such explicit solution has
not been reported elsewhere.

2. SLET for the KG equation with potentials including coulombic terms

In this section we shall consider the three-dimensional KG equation with radially symmetric
Lorentz vector and Lorentz scalar potentidfgy) and S(r), respectively. If¥(r) denotes

the wavefunction of the KG particle, a separation of variablgs) = r1R(r)Y (0, ¢)
yields the following radial equation (in units= ¢ = 1) [1]:

2 1
[ d Jrl(l+ )

dr2 r2

+[S(r) +m]*—[E — V<r)]2] R(r)=0 1

where E is the energy and is the angular quantum number. For Coulomb-like potentials
one may use the substitutions:

Vi) = V(r)? - AZ/r? (2)
and

S.(r) = S(r)? = A3/r? (3)
so that equation (1) becomes

2 101/ 1
& + e+ +y(r)+2EV(r) | R(r) = E2R(r) (4)
dr? r2
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where
y(r) = =V, (r) + S,(r) + 2mS(r) + m? (5)
'+ =1(0+1)— A, I'=-1+/U+1/22- A, (6)
A.= A2 — A2, )
Hereby, it should be noted that for the caseVofr) = —Ai/r and S(r) = —Ay/r,

equation (4) reduces to a form nearly identical to the 8dimger equation for a Coulomb
field. Its solution can thus be inferred from the known solution of the @tihger—Coulomb
problem. We carried this out in appendix A.

If we shift I’ through the relatio’ = I + g, equation (4) reads

& [P+IRB+1D)+ BB+ D]

—— +
dr2 72

where 8 is a suitable shift to be determined and is mainly introduced to avoid the trivial

case wher’ = 0. .
To start the systematic/l expansion [8, 9] we define

+y@r) + 2EV(r):| R(r) = E?R(r) (8)

2 }
y(r) = E[V(Vo) + v/ (ro)rox /1% + y" (ro)réx?/2 + - -] 9)
72
V()= %[V(ro) + V' (royrox /1Y + V" (royrgx?/20 + - -] (10)
72
E = ZE[EO+E1/Z_+ Ey/I? + E3/lP+ -] (12)

wherex = [Y2(r — ro)/ro, ro is currently an arbitrary point to perform Taylor expansions
about, with its particular value to be determined below, @hi$ to be set equal 7 at the
end of the calculations. Substituting equations (9)—(11) into equation (8) implies

—d? - BB +1) 2x 3?
I:W+<l+(2,3+1)+T)(1—1_17+T—"'>

! v rorox | y"(rorgx®  y" (ro)rgx’ )

rol
+—|v@o+

0 1172 2 613%/2
2rgl V/(ro)rox Er
+?<V(Fo)+l-17+“' E0+T+l-—2+"' D, (x)
= MUn, (Dn, (x) (12)

where

(13)

r2l 2EoE E? + 2EoE 2(EoE3 + E1E
MnTZL[EcZ)-F 91+(1 _02)+(03_ 12)+'_.]

0 [2 I3
andn, is the radial quantum number. Equation (12) is a 8dmger-like equation for the

one-dimensional anharmonic oscillator and has been discussed in detail bytimbjd1].
We therefore quote only the resulting eigenvalue of [11] and write

22V (ro)Eo  rdy(ro) 2r2V (ro) E1 1
) + 0 ]+[(2ﬁ+1)+—Q +<nr+§>w:|

1 2r2V (ro) E2 1 [2r2V (ro)E3
L e e R

Mn, = l-|:1+

(14)
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wherew; anday are given in appendix B of this paper. If we compare equation (14) with
(13), we obtain

Eo= V(o) £/V(r0)2 + Q/rd + v (r0) (15)
_ Q 1
Ei= ZrS(Eo Vo) |:2ﬁ + 1+ (n, + 2) w] (16)
_ 0
E; = —ng(Eo Vo) [B(B+1)+ ai] (17)
_ 0
5= 22— Vion ™ (18)
and
_ *2
E, =Eo+ 22 Eo— Vo)) [ﬁ(ﬁ thtot } : (19)
Hererg is chosen to be the minimum dy, i.e.
dEy d?Eo

Hence,rg is obtained through the relation

20 = 2(I' — B)? = b(ro) + v/'b(ro)2 — 4c(ro) (21)

where

b(ro) = 312V (ro)V'(ro) + ¥ (ro) + roV'(r0)?] (22)

c(ro) = rﬁf[?’(ro)z + 4V (ro) V' (ro)y' (ro) — 4y (ro) V' (r0)]. (23)
The shifting parameteg is determined by requiring; = 0 [1, 8—-12] to obtain

B =1+, +3w]/2 (24)
where

w = [12+ ng’”Q// (ro) | 4r3v//Q(r°)E°]l/2. (25)

It is convenient to summarize the above procedure in the following steps. (a) Cal@ulate
from equation (21) and substitute it into equation (15) to filadn terms ofry. (b) Substitute

Ep and Q into equation (25) to obtaim. (c) Find 8 from equation (24) to calculate

from equation (21). (e) Finally, one can obtally and calculate£, from equation (19).
However, one is not always able to calculagen terms of the potential coupling constants
since the analytical expressions become algebraically complicated, although straightforward.
Therefore, one has to appeal to numerical computations tardiaehd henceky.

3. Applications, results and discussion

To show the performance of the analytical expressions of SLET it is best to consider some
special cases.
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3.1.V(r)=—-A;/randS() =0

A pionic atom in a Coulomb potential obeys the KG equation wittr) = —A;/r and
S(r) = 0. To calculate its bound-state energies, which are simply the bound-state energies
of a7~ meson in a Coulomb potential, we follow the SLET procedure and find

_ TAlE AT+ O)

E
0 A1rg

(26)

Here we have to choose the positive sign since states with negative energies correspond to
antiparticles. Furthermore, the negative sign yields a contradiction to equation (21). Hence
w=2,

/ 2 1 1 ° 2
O=U=p°=|n+5+(I+5) -4 (27)
02+ A%
TN meaz (29)
and
Ai —-1/2
n

whereni = /0. Equation (29) represents the well known closed-form solution of the KG
equation for ar~ meson in a Coulomb potential [17]. It should be noted that higher-
order terms of the energy eigenvalues vanish identically,A.e= 0 and E3 = 0. Hence

E, = Eo.

3.2.V(r)=0andS(r) = —Ay/r

Since there is no experimental evidence, to the best of our knowledge, for such a long-range
interaction, our calculations are only of academic interest. Following the above procedure
we find

! — 2
=0 (30)
and
291/2
Eo =+m |: - %:| (31)

whereni = n, + % +./U+ %)2 + A3. Again the higher-order terms of the energy eigenvalues
vanish identically. Thu€, = Ep.

Obviously there exist two branches of solutions in the bound region and they exhibit
identical behaviour, which reflects the fact that the Lorentz scalar interaction does not
distinguish between particles and antiparticles. The particle and antiparticle states, positive
and negative energies, respectively, approach each other with increasing coupling constant,
without touching. Therefore, spontaneous pair creation never occurs, no matter how strong
the potential chosen.
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33.V(r)=8Sr)=-A/r

This type of potential mixtureV (r) = S(r), has considerable interest in quarkonium
spectroscopy [4, 9, 18]. For the particular casg) = S(r) = —A/r, SLET yields

E(): —A/ro:I:m (32)
and
(E5 —m®)ré = A% F (Q + A?). (33)

Equation (33) can be satisfied if and only if the negative sign is chosen, otherwise it
contradicts equation (21). The only valid sign in equation (32) is thus the positive one, and
hence

Eo=—A/ro+m (34)

which in turn implies that

ro = nzz;ni_:z n=n,+1+1 (35)
and
En_:EO:m[l—Z—AZ} (36)
’ n? 4+ A?

where higher-order terms of the energy eigenvalues vanish identically, @rttie principle
quantum number. FoA — oo, E,, approaches the valuem asymptotically, but the state
never goes into the negative continuum.

To show that equation (36) yields the energy eigenvalues for Dirac particle in the same
potential mixture, we replackeby j + % to obtain

242 ]
(ny + k| + 1% + A2

E, =m |:l (37)

wherelx| = j + 3 [19].

34.V(r) =—Ay/r +krandS(r) =0

This potential representssac meson in a Coulomb potential perturbed by a linear Lorentz
vector potentiakr. In this case

y(r) = —k?r? + 2A1k 4+ m®. (38)

Equation (38), when substituted in (21), (15), (25), (24), and again in (21), respectively,
yields a very involved algebraic equation f@r. We solve this equation numerically with

a maximum error of order 10715 to calculate fory. Oncerg is calculated,Q, Eo, w, 8,

and henceE,, can be obtained.

In tables 1 and 2 we list our results for the ground-state energies along with those
of McQuarrie and Vrscay [13], who used hypervirial and Hellmann-Feynman theorems
to construct Rayleigh—Scbdinger (RS) perturbation expressions to an arbitrary order.
Our results are given in such a way that the contributions of the second- and third-order
corrections,E,/I? and E3/[3, respectively, to the energy eigenvalues are made clear. The
results are in excellent agreement with those of [13].



Perturbed Coulomb potentials in the Klein—Gordon equation 3475

Table 1. Ground-state energies of @~ meson inV(r) = —Ay/r + kr and S(r) = 0 (in
h = ¢ =m = 1 units). The lower bounds to the energiEsof [13] are obtained by replacing
the last; digits of the upper bounds with thgdigits in parentheses.

Aq k [13] Eo Eo + E3/I? Equation (11)
0.2 0.0 0.978906 31293 0.978906 31293 0.978906 31293 0.978906 31293
0.01 1.027 622(19) 1.029590 1.027 995 1.027 641
0.05 1.152(48) 1.1541 1.1514 1.1504
0.1 1.277(48) 1.2681 1.2648 1.2634
0.2 1.50(37) 1.4478 1.4436 14416
0.3 1.73(45) 1.5959 1.5907 1.5882
0.3 0.0 0.948683298 1 0.948683298 1 0.9486832981 0.948683298 1
0.01 0.984 379538 0(78) 0.9861391713 0.984 4578890 0.984 3836237
0.05 1.086 12(08) 1.09160 1.08710 1.08611
0.1 1.18398(08) 1.19111 1.18517 1.18356
0.2 1.345(34) 1.3500 1.3421 1.3397
0.3 1.487(52) 1.4820 14723 1.4693
Table 2. Ground-state energies of = meson inV(r) = —Ay/r + kr and S(r) = 0 (in
h = c =m = 1 units). The lower bounds to the energiEsof [13] are obtained by replacing
the last; digits of the upper bounds with thgdigits in parentheses.
A1 k [13] Eg Eo+ Ea/I? Equation (11)
0.4 0.0 0.894427191 0.894427191 0.894427191 0.894427191
0.01 0.9190495619 0.9199389105 0.9190185899 0.9190592557
0.05 0.997 350 23(19) 1.002924 92 0.99763976 0.997 32540
0.1 1.075 966 6(05) 1.085037 30 1.076 89328 1.075856 18
0.2 1.204 88(59) 1.21825 1.206 62 1.20453
0.3 1.3138(20) 1.32987 1.31551 1.31261
0.5 0.0 0.707 106 78119 0.707106 78119 0.707 106 78119 0.707 106 78119
0.01 0.717444 1845 0.7175816778 0.7174395344 0.717 4446067
0.05 0.7548104279 0.756 979 656 2 0.7546116940 0.754864 5285
0.1 0.795714 744 277(07) 0.8013654436 0.7951332112 0.7959080738
0.2 0.866 13531(67) 0.87841386 0.86508153 0.866 484 55
0.3 0.926 9(68) 0.9450 0.92586 0.92734

35.V(@r)=—A1/randS(r) = kr

A 7~ meson in a Coulomb potential perturbed by a linear scalar interaction is described by
V(r) = —A1/r and S(r) = kr potential mixture in the KG equation. In this case
y(r) = k2% 4 2mkr + m2. (39)

Following the same steps as (iv), we numerically solverfpto a maximum error of order
~ 1071 0, Eo, w, B, andE,, . Our results for the ground-state energies are presented in
tables 3 and 4 in such a way that the convergence of SLET is made clear. We compare
them with those of [13]; they are in excellent agreement.

In view of the above results, the following observations deserve to be recorded.

The closed-form solutions, equations (29), (31) and (36), being obtained by the leading
term of the energy series, equation (11), where higher-order terms vanished identically,
reveals how rapidly converging are the results of SLET.
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Table 3. Ground-state energies of @~ meson inV(r) = —Ai/r and S(r) = kr (in
h = c¢=m = 1 units). The lower bounds to the energiEsof [13] are obtained by replacing
the last; digits of the upper bounds with thgdigits in parentheses.
Aq k [13] Eo Eo + E3/I? Equation (11)
0.2 0.0 0.9789063129 0.9789063129 0.978906 3129 0.978906 3129
0.01 1.026 683 9(09) 1.02871502 1.02708579 1.02671248
0.05 1.145795(48) 1.1479170 1.1449853 1.1439393
0.1 1.263(34) 1.2543 1.2506 1.2491
0.2 1.47(34) 1.418 1.413 1.411
0.3 1.68(41) 1.551 1.545 1.542
0.3 0.0 0.948 683 298 05 0.948 683298 05 0.948 683 298 05 0.948683 298
0.01 0.9834119450(49) 0.9852632146 0.9835164748 0.9834118201
0.05 1.079797(62) 1.085772 1.081002 1.079875
0.1 1.170(69) 1.17826 1.17182 1.16999
0.2 1.316(05) 1.3227 1.31403 1.31133
0.3 1.443(09) 1.4404 1.42998 1.426 66
Table 4. Ground-state energies of @~ meson inV(r) = —Ay/r and S(r) = kr (in
h = ¢ =m = 1 units). The lower bounds to the energiEsf [13] are obtained by replacing
the last; digits of the upper bounds with thgdigits in parentheses.
A1 k [13] Eo Eo + E»/I? Equation (11)
0.4 0.0 0.894427191 0.894427191 0.894427191 0.894 427191
0.01 0.9180779227 0.919060388 2 0.9180537998 0.9180878824
0.05 0.991 505 0(49) 0.997801768 0.992 04395 0.991507 96
0.1 1.063490(84) 1.073956 16 1.06503089 1.06352424
0.2 1.1791(88) 1.19492 1.18212 1.17926
0.3 1.2755(37) 1.29449 1.27883 1.27503
0.5 0.0 0.707106 7812 0.7071067812 0.7071067812 0.7071067812
0.01 0.7168151723 0.716 9998899 0.716 8096675 0.7168157252
0.05 0.7514351538 0.7544233036 0.7512342784 0.7514976377
0.1 0.788 775203 61(59) 0.7967081101 0.7883364991 0.7889588588
0.2 0.852303690(62) 0.869 749249 0.852125792 0.852 493296
0.3 0.906 822 3(16) 0.9322673 0.9074421 0.906 889

The numerical results of SLET, in tables 1-4, imply that the contributions of the second-
and third-order corrections to the energy eigenvalues are almost negligible. The convergence
of SLET is thus out of the question. However, the RS coefficidritfor the eigenvalue

00
E = Z EWDpr
p=0

(40)

used in [13], as well as their continued-fraction (CF) counterpastsvere computed
numerically to large orderp ~ 100 andp ~ 50 for the Lorentz vector linear and the
Lorentz scalar linear perturbations, respectively. Numerical ratio tests showed that the
perturbation series are divergent [13]. Also, thehad suffered from occasional eruptions
reversing the roles of the upper and lower bounds of the energy eigenvalues. Moreover,
the gap between the two bounds increases with increasing coupling cahstentioes the
uncertainty of the energy eigenvalues.



Perturbed Coulomb potentials in the Klein—Gordon equation 3477
4. Conclusions and remarks

In this paper we have introduced SLET to solve the eigenvalues of KG equation with
Lorentz vector and Lorentz scalar potentials including coulombic terms. Although it applies
to any spherically symmetric potential, those that include Coulomb-like terms were only
considered. We have reproduced closed-form solutions for a Lorentz vector or a Lorentz
scalar, and for an equally mixed Lorentz vector and Lorentz scalar coulombic potentials
[20]. Compared with those of [13] our results are highly accurate and rapidly convergent.

The conceptual soundness of our SLET is obvious. It is highly accurate and efficient
with respect to computer time. It does not need the wavefunctions or matrix elements, but
when necessary wavefunctions can be calculated. It puts no constraints on the coupling
constants of the potential or on the quantum numbers. It simply consists of ygiag &n
expansion parameter rather than the coupling constant of the potential. It is to be understood
as being an expansion through not only the angular momentum quantum number but also
through any existing quantum number in the centrifugal-like term of anyd8amger-like
equation, equation (4).

A general observation concerning the method used by McQuarrie and Vrscay [13] is
in order. Unlike our approach, their method involves expansions through the coupling
constantk, equation (40). Thus, whereas their computations for the ground-state energies
are beyond doubt, the same need not be true for the case of strong coupling consthnt
in equation (40), for example.

Finally, we would like to remark that SLET is also applicable to more complicated
potentials. For example, the screened Coulomb potentials which have great utility in
atomic, nuclear and plasma physics. The equally mixed Lorentz scalar and Lorentz vector
logarithmic potential which has significant interest in quarkonium spectroscopy [4].

Appendix A. The KG equation with Coulomb-like Lorentz scalar and Lorentz vector
potentials

In this section we present a simple solution for a KG particle in Coulomb-like Lorentz scalar
and Lorentz vector potentials, i.&.(r) = —A;/r and S(r) = —A,/r. For this particular
problem the KG equation reduces to

[_ d? N U'('+1)  2mAz+ EAy)
r

dr? r2
It is obvious that this equation is in a form nearly identical to the 8dimger equation for a
Coulomb potential. Its solution can thus be inferred from the knowndithger—Coulomb
solution. Therefore, one may obtain its solution through the relation

2 —(@mAx+ 2EA;)?

} R(r) = [E? — m?]R(r). (41)

E? — 42
(2i1)2 (42)
This equation is quadratic iE and thus admits a solution of the form
~ArAp £ \[AZAS (2 4 A3 (2 — AD)
E, =m (43)

2 + A%

wheren = n, +1' + 1. Hereby, it should be pointed out that this result reduces to
those obtained in sections 3.1-3.3. Although McQuarrie and Vrscay [13] used a confluent
hypergeometric function to obtain this result, they have misprinted it (see the appendix of
[13]).
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Appendix B. a1 and a in equation (14)

The definitions ofx; anda, which appeared in equation (14) are:

a1 =[(1+2n,)ez + 3(L+ 2n, + 2n2)es] — w ] + 6(1+ 2n,)eses
+(11+4 301, + 30n?)e3] (44)

= (14 2n,)d2 + 3(L+ 2n, + 2n?)ds + 5(3 4 8n, + 61 + dn®)ds — w™ (1 + 2n,)e3

+12(1 + 2n, + 2n?)ezeq + 2e1ds + 221+ 59, + 51n? 4 34n>)ed
+6(1 + 2n,)e1ds + 30(1 + 2n, + 2n?)erds + 6(1 + 2n,)esds
+2(11+4 301, + 30n?)esds 4+ 10(13+ 401, + 4202 + 2813)eads]
+w™?[4e2es + 36(1 + 2n,)ereze3 + 8(114 30n, + 30n?)ezel
+24(1 + n,)e3eq + 8(3L+ 781, + T812)erezeq + 12(57 + 18%, + 22512
+150:3)e3e4] — w3[Bedes + 108(1 + 2n,)e2es
+48(11+ 301, + 30n?)erel + 3031+ 109, + 141n? + 94n?)eq] (45)

where
_ & %
€= and d; = i/ (46)
with j =1,2,3,4,i =1,2,3,4,5,6, and
=-2(26+1) g2 =3(268+1) 47)
5
-
g3 =—4+ G—O[VW(FO) +2V"(ro) Eq] (48)
6
£a =5+ =2 [y""(ro) + 2V"" (o) Eq] (49)

240
2r3V'(ro) E2

b1=-28B+1+ 0 (50)
h:%w+b+ﬁzgff (51)
S3=—428+1)  84=528+1) (52)

—6+]2;JVWO@+2VW%wEd (53)
Se=T+ 7ZZQ [y"" (ro) + 2V"""(ro) Eq]. (54)

The terms includingt; have been dropped from the expressions above dihce O.
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