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Abstract. A shifted-l expansion technique is introduced to calculate the energy eigenvalues for
the Klein–Gordon (KG) equation with Lorentz vector and/or Lorentz scalar potentials. Although
it applies to any spherically symmetric potential, those that include Coulomb-like terms are only
considered. Exact eigenvalues for a Lorentz vector or a Lorentz scalar, and an equally mixed
Lorentz vector and Lorentz scalar coulombic potentials are reproduced. Highly accurate and
rapidly converging ground-state energies for Lorentz vector Coulomb with a Lorentz vector or
a Lorentz scalar linear potential,V (r) = −A1/r + kr, andV (r) = −A1/r and S(r) = kr,
respectively, are obtained. Moreover, a simple straightforward closed-form solution for a KG-
particle in coulombic Lorentz vector and Lorentz scalar potentials is presented.

1. Introduction

The Klein–Gordon (KG) and the Dirac equations with Lorentz scalar (added to the mass
term) and/or Lorentz vector (coupled as the 0-component of the four-vector potential)
potentials are of interest in many branches of physics. For example, Lorentz scalar or
equally mixed Lorentz scalar and Lorentz vector potentials have considerable interest in
quark–antiquark mass spectroscopy [1–5]. Lorentz vector potentials have great utility in
atomic, nuclear and plasma physics [6, 7]. Therefore many attempts have been made
to develop approximation techniques to treat relativistic particles in the KG and Dirac
equations [1–7].

Very recently we introduced a shifted-l expansion technique (SLET) to solve the
Schr̈odinger [8], and Dirac equations for some model potentials [9]. SLET is a reformation
to the existing shifted-N expansion technique (SLNT) [1, 10–12] and references therein.
SLET simply consists of using 1/l̄ as an expansion parameter wherel̄ = l−β, β is a suitable
shift, l is the angular momentum quantum number for spherically symmetric potentials, and
l = |m| for cylindrically symmetric potentials, wherem is the magnetic quantum number.
As such, one does not need to construct theN -dimensional form, required to perform SLNT,
of the wave equation of interest. With SLET we simply expand through the quantum number
in the centrifugal term of that equation. Unlike other perturbation methods [13–16], SLET
puts no constraints on the coupling constants of the potential or on the quantum numbers
involved. Above all, it yields very accurate and rapidly converging eigenvalues without the
need of wavefunctions or matrix elements.
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In this paper we shall be concerned with the shifted-l expansion for the KG equation
with radially symmetric Lorentz scalar,S(r), and/or Lorentz vector,V (r), potentials that
include Coulomb-like terms. We shall examine SLET and calculate the energy eigenvalues
for the KG equation with the following potential mixtures. (i)V (r) = −A1/r andS(r) = 0,
which represents aπ− meson in a Coulomb potential. (ii)V (r) = 0 andS(r) = −A2/r,
which has no experimental evidence, to the best of our knowledge, thus our calculations
are only of academic interest. (iii)V (r) = S(r) = −A/r which represents not only a KG-
particle in an equally mixed Lorentz scalar and Lorentz vector potential but also a Dirac
particle in the same potential mixture, wherel = j + 1

2 and the radial KG wavefunction
represents the radial large component of the Dirac spinor [4, 9]. (iv)V (r) = −A1/r+kr and
S(r) = 0 representing aπ− meson in a Coulomb potential perturbed by a linear Lorentz
vector interactionkr. (v) V (r) = −A1/r and S(r) = kr describing aπ− meson in a
Coulomb potential perturbed by a linear Lorentz scalar potentialkr.

In section 2 we shall introduce SLET for the KG equation with any spherically
symmetric Lorentz scalar and/or Lorentz vector potentials that include Coulomb-like
interactions. We shall cast SLET’s analytical expressions in such a way that allows the
reader to use them without proceeding into their derivations. In section 3 we shall show
that these expressions yield closed-form solutions to the KG equation for mixtures (i)–(iii).
Ground-state energies for mixtures (iv) and (v) will be calculated and compared with those
of McQuarrie and Vrscay [13] in the same section. We conclude and make remarks in
section 4.

In appendix A we present a simple straightforward closed-form solution for the KG
equation with Coulomb-like Lorentz scalar and Lorentz vector potentials. It could be
interesting to mention that a similar solution was found by McQuarrie and Vrscay [13],
who used a confluent hypergeometric function in their calculation. They have misprinted it
though (see the appendix of [13]). To the best of our knowledge, such explicit solution has
not been reported elsewhere.

2. SLET for the KG equation with potentials including coulombic terms

In this section we shall consider the three-dimensional KG equation with radially symmetric
Lorentz vector and Lorentz scalar potentials,V (r) andS(r), respectively. If9(r) denotes
the wavefunction of the KG particle, a separation of variables9(r) = r−1R(r)Y (θ, φ)

yields the following radial equation (in units ¯h = c = 1) [1]:[
− d2

dr2
+ l(l + 1)

r2
+ [S(r)+m]2− [E − V (r)]2

]
R(r) = 0 (1)

whereE is the energy andl is the angular quantum number. For Coulomb-like potentials
one may use the substitutions:

Vr(r) = V (r)2− A2
1/r

2 (2)

and

Sr(r) = S(r)2− A2
2/r

2 (3)

so that equation (1) becomes[
− d2

dr2
+ l
′(l′ + 1)

r2
+ γ (r)+ 2EV (r)

]
R(r) = E2R(r) (4)
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where

γ (r) = −Vr(r)+ Sr(r)+ 2mS(r)+m2 (5)

l′(l′ + 1) = l(l + 1)− Ac l′ = − 1
2 +

√
(l + 1/2)2− Ac (6)

Ac = A2
1− A2

2. (7)

Hereby, it should be noted that for the case ofV (r) = −A1/r and S(r) = −A2/r,
equation (4) reduces to a form nearly identical to the Schrödinger equation for a Coulomb
field. Its solution can thus be inferred from the known solution of the Schrödinger–Coulomb
problem. We carried this out in appendix A.

If we shift l′ through the relationl′ = l̄ + β, equation (4) reads[
− d2

dr2
+ [ l̄2+ l̄(2β + 1)+ β(β + 1)]

r2
+ γ (r)+ 2EV (r)

]
R(r) = E2R(r) (8)

whereβ is a suitable shift to be determined and is mainly introduced to avoid the trivial
case whenl′ = 0.

To start the systematic 1/l̄ expansion [8, 9] we define

γ (r) = l̄2

Q
[γ (r0)+ γ ′(r0)r0x/l̄1/2+ γ ′′(r0)r2

0x
2/2l̄ + · · ·] (9)

V (r) = l̄2

Q
[V (r0)+ V ′(r0)r0x/l̄1/2+ V ′′(r0)r2

0x
2/2l̄ + · · ·] (10)

E = l̄2

Q
[E0+ E1/l̄ + E2/l̄

2+ E3/l̄
3+ · · ·] (11)

wherex = l̄1/2(r − r0)/r0, r0 is currently an arbitrary point to perform Taylor expansions
about, with its particular value to be determined below, andQ is to be set equal tōl2 at the
end of the calculations. Substituting equations (9)–(11) into equation (8) implies[−d2

dx2
+
(
l̄ + (2β + 1)+ β(β + 1)

l̄

)(
1− 2x

l̄1/2
+ 3x2

l̄
− · · ·

)
+ r

2
0 l̄

Q

(
γ (r0)+ γ

′(r0)r0x
l̄1/2

+ γ
′′(r0)r2

0x
2

2l̄
+ γ

′′′(r0)r3
0x

3

6l̄3/2
+ · · ·

)
+2r2

0 l̄

Q

(
V (r0)+ V

′(r0)r0x
l̄1/2

+ · · ·
)(

E0+ E1

l̄
+ E2

l̄2
+ · · ·

)]
8nr (x)

= µnr8nr (x) (12)

where

µnr =
r2

0 l̄

Q

[
E2

0 +
2E0E1

l̄
+ (E

2
1 + 2E0E2)

l̄2
+ 2(E0E3+ E1E2)

l̄3
+ · · ·

]
(13)

andnr is the radial quantum number. Equation (12) is a Schrödinger-like equation for the
one-dimensional anharmonic oscillator and has been discussed in detail by Imboet al [11].
We therefore quote only the resulting eigenvalue of [11] and write

µnr = l̄
[

1+ 2r2
0V (r0)E0

Q
+ r

2
0γ (r0)

Q

]
+
[
(2β + 1)+ 2r2

0V (r0)E1

Q
+
(
nr + 1

2

)
w

]
+1

l̄

[
β(β + 1)+ 2r2

0V (r0)E2

Q
+ α1

]
+ 1

l̄2

[
2r2

0V (r0)E3

Q
+ α2

]
(14)
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whereα1 andα2 are given in appendix B of this paper. If we compare equation (14) with
(13), we obtain

E0 = V (r0)±
√
V (r0)2+Q/r2

0 + γ (r0) (15)

E1 = Q

2r2
0(E0− V (r0))

[
2β + 1+

(
nr + 1

2

)
w

]
(16)

E2 = Q

2r2
0(E0− V (r0))

[β(β + 1)+ α1] (17)

E3 = Q

2r2
0(E0− V (r0))

α2 (18)

and

Enr = E0+ 1

2r2
0(E0− V (r0))

[
β(β + 1)+ α1+ α2

l̄

]
. (19)

Herer0 is chosen to be the minimum ofE0, i.e.

dE0

dr0
= 0 and

d2E0

dr2
0

> 0. (20)

Hence,r0 is obtained through the relation

2Q = 2(l
′ − β)2 = b(r0)+

√
b(r0)2− 4c(r0) (21)

where

b(r0) = r3
0[2V (r0)V

′(r0)+ γ ′(r0)+ r0V ′(r0)2] (22)

c(r0) = r6
0

4
[γ ′(r0)2+ 4V (r0)V

′(r0)γ ′(r0)− 4γ (r0)V
′(r0)2]. (23)

The shifting parameterβ is determined by requiringE1 = 0 [1, 8–12] to obtain

β = −[1+ (nr + 1
2)w]/2 (24)

where

w =
[

12+ 2r4
0γ
′′(r0)
Q

+ 4r4
0V
′′(r0)E0

Q

]1/2

. (25)

It is convenient to summarize the above procedure in the following steps. (a) CalculateQ

from equation (21) and substitute it into equation (15) to findE0 in terms ofr0. (b) Substitute
E0 andQ into equation (25) to obtainw. (c) Find β from equation (24) to calculater0
from equation (21). (e) Finally, one can obtainE0 and calculateEnr from equation (19).
However, one is not always able to calculater0 in terms of the potential coupling constants
since the analytical expressions become algebraically complicated, although straightforward.
Therefore, one has to appeal to numerical computations to findr0 and henceE0.

3. Applications, results and discussion

To show the performance of the analytical expressions of SLET it is best to consider some
special cases.
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3.1. V (r) = −A1/r andS(r) = 0

A pionic atom in a Coulomb potential obeys the KG equation withV (r) = −A1/r and
S(r) = 0. To calculate its bound-state energies, which are simply the bound-state energies
of a π− meson in a Coulomb potential, we follow the SLET procedure and find

E0 = −A
2
1± (A2

1+Q)
A1r0

. (26)

Here we have to choose the positive sign since states with negative energies correspond to
antiparticles. Furthermore, the negative sign yields a contradiction to equation (21). Hence
w = 2,

Q = (l′ − β)2 =
nr + 1

2
+
√(

l + 1

2

)2

− A2
1

2

(27)

r0 =
√
Q2+QA2

1

m2A2
1

(28)

and

E0 = m
[

1+ A
2
1

ñ2

]−1/2

(29)

whereñ = √Q. Equation (29) represents the well known closed-form solution of the KG
equation for aπ− meson in a Coulomb potential [17]. It should be noted that higher-
order terms of the energy eigenvalues vanish identically, i.e.E2 = 0 andE3 = 0. Hence
Enr = E0.

3.2. V (r) = 0 andS(r) = −A2/r

Since there is no experimental evidence, to the best of our knowledge, for such a long-range
interaction, our calculations are only of academic interest. Following the above procedure
we find

r0 = (l′ − β)2
mA2

(30)

and

E0 = ±m
[

1− A
2
2

ñ2

]1/2

(31)

whereñ = nr+ 1
2+
√
(l + 1

2)
2+ A2

2. Again the higher-order terms of the energy eigenvalues
vanish identically. ThusEnr = E0.

Obviously there exist two branches of solutions in the bound region and they exhibit
identical behaviour, which reflects the fact that the Lorentz scalar interaction does not
distinguish between particles and antiparticles. The particle and antiparticle states, positive
and negative energies, respectively, approach each other with increasing coupling constant,
without touching. Therefore, spontaneous pair creation never occurs, no matter how strong
the potential chosen.
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3.3. V (r) = S(r) = −A/r
This type of potential mixture,V (r) = S(r), has considerable interest in quarkonium
spectroscopy [4, 9, 18]. For the particular caseV (r) = S(r) = −A/r, SLET yields

E0 = −A/r0±m (32)

and

(E2
0 −m2)r2

0 = A2∓ (Q+ A2). (33)

Equation (33) can be satisfied if and only if the negative sign is chosen, otherwise it
contradicts equation (21). The only valid sign in equation (32) is thus the positive one, and
hence

E0 = −A/r0+m (34)

which in turn implies that

r0 = n2+ A2

2mA
n = nr + l + 1 (35)

and

Enr = E0 = m
[

1− 2A2

n2+ A2

]
(36)

where higher-order terms of the energy eigenvalues vanish identically, andn is the principle
quantum number. ForA→∞, Enr approaches the value−m asymptotically, but the state
never goes into the negative continuum.

To show that equation (36) yields the energy eigenvalues for Dirac particle in the same
potential mixture, we replacel by j + 1

2 to obtain

Enr = m
[

1− 2A2

(nr + |κ| + 1)2+ A2

]
(37)

where|κ| = j + 1
2 [19].

3.4. V (r) = −A1/r + kr andS(r) = 0

This potential represents aπ− meson in a Coulomb potential perturbed by a linear Lorentz
vector potentialkr. In this case

γ (r) = −k2r2+ 2A1k +m2. (38)

Equation (38), when substituted in (21), (15), (25), (24), and again in (21), respectively,
yields a very involved algebraic equation forr0. We solve this equation numerically with
a maximum error of order∼ 10−15 to calculate forr0. Oncer0 is calculated,Q, E0, w, β,
and henceEnr can be obtained.

In tables 1 and 2 we list our results for the ground-state energies along with those
of McQuarrie and Vrscay [13], who used hypervirial and Hellmann–Feynman theorems
to construct Rayleigh–Schrödinger (RS) perturbation expressions to an arbitrary order.
Our results are given in such a way that the contributions of the second- and third-order
corrections,E2/l̄

2 andE3/l̄
3, respectively, to the energy eigenvalues are made clear. The

results are in excellent agreement with those of [13].
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Table 1. Ground-state energies of aπ− meson inV (r) = −A1/r + kr and S(r) = 0 (in
h̄ = c = m = 1 units). The lower bounds to the energiesE of [13] are obtained by replacing
the lastj digits of the upper bounds with thej digits in parentheses.

A1 k [13] E0 E0 + E2/l̄
2 Equation (11)

0.2 0.0 0.978 906 312 93 0.978 906 312 93 0.978 906 312 93 0.978 906 312 93
0.01 1.027 622(19) 1.029 590 1.027 995 1.027 641
0.05 1.152(48) 1.154 1 1.151 4 1.150 4
0.1 1.277(48) 1.268 1 1.264 8 1.263 4
0.2 1.50(37) 1.447 8 1.443 6 1.441 6
0.3 1.73(45) 1.595 9 1.590 7 1.588 2

0.3 0.0 0.948 683 298 1 0.948 683 298 1 0.948 683 298 1 0.948 683 298 1
0.01 0.984 379 538 0(78) 0.986 139 171 3 0.984 457 889 0 0.984 383 623 7
0.05 1.086 12(08) 1.091 60 1.087 10 1.086 11
0.1 1.183 98(08) 1.191 11 1.185 17 1.183 56
0.2 1.345(34) 1.350 0 1.342 1 1.339 7
0.3 1.487(52) 1.482 0 1.472 3 1.469 3

Table 2. Ground-state energies of aπ− meson inV (r) = −A1/r + kr and S(r) = 0 (in
h̄ = c = m = 1 units). The lower bounds to the energiesE of [13] are obtained by replacing
the lastj digits of the upper bounds with thej digits in parentheses.

A1 k [13] E0 E0 + E2/l̄
2 Equation (11)

0.4 0.0 0.894 427 191 0.894 427 191 0.894 427 191 0.894 427 191
0.01 0.919 049 561 9 0.919 938 910 5 0.919 018 589 9 0.919 059 255 7
0.05 0.997 350 23(19) 1.002 924 92 0.997 639 76 0.997 325 40
0.1 1.075 966 6(05) 1.085 037 30 1.076 893 28 1.075 856 18
0.2 1.204 88(59) 1.218 25 1.206 62 1.204 53
0.3 1.313 8(20) 1.329 87 1.315 51 1.312 61

0.5 0.0 0.707 106 781 19 0.707 106 781 19 0.707 106 781 19 0.707 106 781 19
0.01 0.717 444 184 5 0.717 581 677 8 0.717 439 534 4 0.717 444 606 7
0.05 0.754 810 427 9 0.756 979 656 2 0.754 611 694 0 0.754 864 528 5
0.1 0.795 714 744 277(07) 0.801 365 443 6 0.795 133 211 2 0.795 908 073 8
0.2 0.866 135 31(67) 0.878 413 86 0.865 081 53 0.866 484 55
0.3 0.926 9(68) 0.945 0 0.925 86 0.927 34

3.5. V (r) = −A1/r andS(r) = kr
A π− meson in a Coulomb potential perturbed by a linear scalar interaction is described by
V (r) = −A1/r andS(r) = kr potential mixture in the KG equation. In this case

γ (r) = k2r2+ 2mkr +m2. (39)

Following the same steps as (iv), we numerically solve forr0, to a maximum error of order
∼ 10−15, Q, E0, w, β, andEnr . Our results for the ground-state energies are presented in
tables 3 and 4 in such a way that the convergence of SLET is made clear. We compare
them with those of [13]; they are in excellent agreement.

In view of the above results, the following observations deserve to be recorded.
The closed-form solutions, equations (29), (31) and (36), being obtained by the leading

term of the energy series, equation (11), where higher-order terms vanished identically,
reveals how rapidly converging are the results of SLET.
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Table 3. Ground-state energies of aπ− meson inV (r) = −A1/r and S(r) = kr (in
h̄ = c = m = 1 units). The lower bounds to the energiesE of [13] are obtained by replacing
the lastj digits of the upper bounds with thej digits in parentheses.

A1 k [13] E0 E0 + E2/l̄
2 Equation (11)

0.2 0.0 0.978 906 312 9 0.978 906 312 9 0.978 906 312 9 0.978 906 312 9
0.01 1.026 683 9(09) 1.028 715 02 1.027 085 79 1.026 712 48
0.05 1.145 795(48) 1.147 917 0 1.144 985 3 1.143 939 3
0.1 1.263(34) 1.254 3 1.250 6 1.249 1
0.2 1.47(34) 1.418 1.413 1.411
0.3 1.68(41) 1.551 1.545 1.542

0.3 0.0 0.948 683 298 05 0.948 683 298 05 0.948 683 298 05 0.948 683 298
0.01 0.983 411 945 0(49) 0.985 263 214 6 0.983 516 474 8 0.983 411 820 1
0.05 1.079 797(62) 1.085 772 1.081 002 1.079 875
0.1 1.170(69) 1.178 26 1.171 82 1.169 99
0.2 1.316(05) 1.322 7 1.314 03 1.311 33
0.3 1.443(09) 1.440 4 1.429 98 1.426 66

Table 4. Ground-state energies of aπ− meson inV (r) = −A1/r and S(r) = kr (in
h̄ = c = m = 1 units). The lower bounds to the energiesE of [13] are obtained by replacing
the lastj digits of the upper bounds with thej digits in parentheses.

A1 k [13] E0 E0 + E2/l̄
2 Equation (11)

0.4 0.0 0.894 427 191 0.894 427 191 0.894 427 191 0.894 427 191
0.01 0.918 077 922 7 0.919 060 388 2 0.918 053 799 8 0.918 087 882 4
0.05 0.991 505 0(49) 0.997 801 768 0.992 043 95 0.991 507 96
0.1 1.063 490(84) 1.073 956 16 1.065 030 89 1.063 524 24
0.2 1.179 1(88) 1.194 92 1.182 12 1.179 26
0.3 1.275 5(37) 1.294 49 1.278 83 1.275 03

0.5 0.0 0.707 106 781 2 0.707 106 781 2 0.707 106 781 2 0.707 106 781 2
0.01 0.716 815 172 3 0.716 999 889 9 0.716 809 667 5 0.716 815 725 2
0.05 0.751 435 153 8 0.754 423 303 6 0.751 234 278 4 0.751 497 637 7
0.1 0.788 775 203 61(59) 0.796 708 110 1 0.788 336 499 1 0.788 958 858 8
0.2 0.852 303 690(62) 0.869 749 249 0.852 125 792 0.852 493 296
0.3 0.906 822 3(16) 0.932 267 3 0.907 442 1 0.906 889

The numerical results of SLET, in tables 1–4, imply that the contributions of the second-
and third-order corrections to the energy eigenvalues are almost negligible. The convergence
of SLET is thus out of the question. However, the RS coefficientsEp for the eigenvalue

E =
∞∑
p=0

E(p)kp (40)

used in [13], as well as their continued-fraction (CF) counterpartscp were computed
numerically to large order,p ∼ 100 andp ∼ 50 for the Lorentz vector linear and the
Lorentz scalar linear perturbations, respectively. Numerical ratio tests showed that the
perturbation series are divergent [13]. Also, thecp had suffered from occasional eruptions
reversing the roles of the upper and lower bounds of the energy eigenvalues. Moreover,
the gap between the two bounds increases with increasing coupling constantk, as does the
uncertainty of the energy eigenvalues.
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4. Conclusions and remarks

In this paper we have introduced SLET to solve the eigenvalues of KG equation with
Lorentz vector and Lorentz scalar potentials including coulombic terms. Although it applies
to any spherically symmetric potential, those that include Coulomb-like terms were only
considered. We have reproduced closed-form solutions for a Lorentz vector or a Lorentz
scalar, and for an equally mixed Lorentz vector and Lorentz scalar coulombic potentials
[20]. Compared with those of [13] our results are highly accurate and rapidly convergent.

The conceptual soundness of our SLET is obvious. It is highly accurate and efficient
with respect to computer time. It does not need the wavefunctions or matrix elements, but
when necessary wavefunctions can be calculated. It puts no constraints on the coupling
constants of the potential or on the quantum numbers. It simply consists of using 1/l̄ as an
expansion parameter rather than the coupling constant of the potential. It is to be understood
as being an expansion through not only the angular momentum quantum number but also
through any existing quantum number in the centrifugal-like term of any Schrödinger-like
equation, equation (4).

A general observation concerning the method used by McQuarrie and Vrscay [13] is
in order. Unlike our approach, their method involves expansions through the coupling
constantk, equation (40). Thus, whereas their computations for the ground-state energies
are beyond doubt, the same need not be true for the case of strong coupling constantk > 1,
in equation (40), for example.

Finally, we would like to remark that SLET is also applicable to more complicated
potentials. For example, the screened Coulomb potentials which have great utility in
atomic, nuclear and plasma physics. The equally mixed Lorentz scalar and Lorentz vector
logarithmic potential which has significant interest in quarkonium spectroscopy [4].

Appendix A. The KG equation with Coulomb-like Lorentz scalar and Lorentz vector
potentials

In this section we present a simple solution for a KG particle in Coulomb-like Lorentz scalar
and Lorentz vector potentials, i.e.V (r) = −A1/r andS(r) = −A2/r. For this particular
problem the KG equation reduces to[

− d2

dr2
+ l
′(l′ + 1)

r2
− 2(mA2+ EA1)

r

]
R(r) = [E2−m2]R(r). (41)

It is obvious that this equation is in a form nearly identical to the Schrödinger equation for a
Coulomb potential. Its solution can thus be inferred from the known Schrödinger–Coulomb
solution. Therefore, one may obtain its solution through the relation

E2−m2 = −(2mA2+ 2EA1)
2

(2ñ)2
. (42)

This equation is quadratic inE and thus admits a solution of the form

Enr = m
−A1A2±

√
A2

1A
2
2+ (ñ2+ A2

1)(ñ
2− A2

2)

ñ2+ A2
1

 (43)

where ñ = nr + l′ + 1. Hereby, it should be pointed out that this result reduces to
those obtained in sections 3.1–3.3. Although McQuarrie and Vrscay [13] used a confluent
hypergeometric function to obtain this result, they have misprinted it (see the appendix of
[13]).
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Appendix B. α1 and α2 in equation (14)

The definitions ofα1 andα2 which appeared in equation (14) are:

α1 = [(1+ 2nr)e2+ 3(1+ 2nr + 2n2
r )e4] − w−1[e2

1 + 6(1+ 2nr)e1e3

+(11+ 30nr + 30n2
r )e

2
3] (44)

α2 = (1+ 2nr)d2+ 3(1+ 2nr + 2n2
r )d4+ 5(3+ 8nr + 6n2

r + 4n3
r )d6− w−1[(1+ 2nr)e

2
2

+12(1+ 2nr + 2n2
r )e2e4+ 2e1d1+ 2(21+ 59nr + 51n2

r + 34n3
r )e

2
4

+6(1+ 2nr)e1d3+ 30(1+ 2nr + 2n2
r )e1d5+ 6(1+ 2nr)e3d1

+2(11+ 30nr + 30n2
r )e3d3+ 10(13+ 40nr + 42n2

r + 28n3
r )e3d5]

+w−2[4e2
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2
3
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+150n3
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2
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2
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3] (45)

where

ej = εj

wj/2
and di = δi

wi/2
(46)

with j = 1, 2, 3, 4, i = 1, 2, 3, 4, 5, 6, and

ε1 = −2(2β + 1) ε2 = 3(2β + 1) (47)

ε3 = −4+ r5
0

6Q
[γ ′′′(r0)+ 2V ′′′(r0)E0] (48)

ε4 = 5+ r6
0

24Q
[γ ′′′′(r0)+ 2V ′′′′(r0)E0] (49)

δ1 = −2β(β + 1)+ 2r3
0V
′(r0)E2

Q
(50)

δ2 = 3β(β + 1)+ r
4
0V
′′(r0)E2

Q
(51)

δ3 = −4(2β + 1) δ4 = 5(2β + 1) (52)

δ5 = −6+ r7
0

120Q
[γ ′′′′′(r0)+ 2V ′′′′′(r0)E0] (53)

δ6 = 7+ r8
0

720Q
[γ ′′′′′′(r0)+ 2V ′′′′′′(r0)E0]. (54)

The terms includingE1 have been dropped from the expressions above sinceE1 = 0.
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